Author(s):
Plant proteomics is the study of protein’s relationships, functions, compositions, and architectures, as well as their biological functions. It gives a greater grasp of the organism's structure and function than genomics. An organism's or system's proteome is the total set of proteins it produces or modifies. Proteomics allows an ever increasing number of proteins to be identified. This changes with time and in response to different demands or pressures that a cell or organism faces. This method can be used to determine protein changes during plant development, including soma clonal variation. Although far more difficult than genomics, proteomics is one of the most important methodologies for understanding gene function. Proteomics has a large and diverse range of applications. Many functional genomics techniques, such as microarray based expression profiles and systematic phenotypic profiles at the organism level, benefit from proteomics. The integration of these proteomics data with bioinformatics methodologies will expose the functional aspects of the genes, which will finally represent protein properties and activities, allowing researchers and plant breeders to fully comprehend the genetic trait of interest. Plant proteomics is so critical in today's crop development effort. Proteomic approaches can be used to study biotic and abiotic stress tolerance in different germplasm or cultivars, as well as to assess small changes in protein expression levels in response to selective breeding. The goal of this review is to assess proteomic research, types and applications in crop production in general.