Author(s):
Beans comprise an important source of dietary protein for over half a billion people mainly in developing countries. Across farming systems, biotic and abiotic stresses continue to present the major constraints for increased bean production and high yields with bean diseases representing the major constraints to production by reducing yields and seed quality. The progress in genetic and breeding improvement of bean, applying classical methods reached to his limits in many attitudes. Due to a long process of breeding and selection, the bean genetic diversity has been very limited. Bean breeding programmes are well developed, but there are many limitations of the traditionally breading methods coming from the low recombination potential due to the selfing process, low heritability of some important characteristics (total yields and yield components), and embryo abortion of some inter specific hybrids, etc. Then, alongside the conventional breeding techniques, a biotechnological tool such as tissues culture, in vitro mutagenesis, Identification of quantitative trait loci (QTLs) with marker assisted breeding and genetic transformation has been made to obtain improved common bean varieties. Transgenic and Omics based technologies have been shown to be powerful tools holding a tremendous promise for the future.